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Abstract Mining complex data in the form of networks is of increasing inter-
est in many scientific disciplines. Network communities correspond to densely
connected subnetworks, and often represent key functional parts of real-world
systems. In this work, we propose Silhouette Community Detection (SCD),
an approach for detecting communities, based on clustering of network node
embeddings, i.e. real valued representations of nodes derived from their neigh-
borhoods. We investigate the performance of the proposed SCD approach on
234 synthetic networks, as well as on a real-life social network. Even though
SCD is not based on any form of modularity optimization, it performs com-
parably or better than state-of-the-art community detection algorithms, such
as the InfoMap and Louvain algorithms. Further, we demonstrate how SCD’s
outputs can be used along with domain ontologies in semantic subgroup discov-
ery, yielding human-understandable explanations of communities detected in
a real-life protein interaction network. Being embedding-based, SCD is widely
applicable and can be tested out-of-the-box as part of many existing network
learning and exploration pipelines.
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Jožef Stefan Int. Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
E-mail: blaz.skrlj@ijs.si
Jan Kralj
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1 Introduction

Mining complex data in the form of networks is of increasing interest in many
scientific disciplines: social, biological, manufacturing and similar systems can
be represented and analyzed using network-based approaches. In this work we
explore whether the state-of-the-art machine learning techniques for represen-
tation learning can effectively be used in unsupervised network analysis.

Recently developed embeddings technology offers advancements in repre-
sentation learning [58] from different data formats, including learning represen-
tations of network data, such as network node embeddings [8]. Even though
such embeddings are commonly used for supervised learning, such as node
classification and link prediction, less attention is devoted to the study of how
the latent organization of a network can be automatically extracted from node
embeddings in an unsupervised manner.

Real-world complex networks are commonly investigated in terms of their
meso-scale topological structure, such as communities [20]. Algorithms such
as InfoMap [40, 43] and Louvain algorithm [12] are well established for the
task of community detection. Identification of communities for example offers
insights into the inner workings of cellular function, mobile and transportation
networks, and helps with the identification of potential security threats.

The goal of this work is to bridge the two domains, network embedding
and community detection, by demonstrating that node embeddings, when clus-
tered, offer insights into network community structure. Being able to detect
communities from embeddings directly could greatly reduce the complexity of
existing computational pipelines, comprised of multiple different methods, as
well as speed up the development process. The purpose of this work is thus
to explore whether node embeddings can be used to build a scalable and fast
community detection algorithm. To achieve that, we apply a geometric mea-
sure of partition quality (the Silhouette score) on node embeddings directly.
The proposed approach is summarized in Figure 1.

The contribution of this work is multifold, and can be summarized as fol-
lows:

Clustering (c)

Fig. 1: Schematic representation of the proposed approach. The input network
G (comprised of a set of nodes N) first gets mapped to a latent d-dimensional
vector space via f . The vectors are clustered (via c) to obtain the final partition
P (G).
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1. We show how the community detection problem can be cast as a network
embedding clustering task via optimization of the Silhouette metric.

2. The method is evaluated against strong, established baselines on a large
synthetic network collection comprised of 234 networks, where it offers
competitive performance.

3. It is also evaluated on a real-world network, comprised of E-mail commu-
nities, where it outperforms the state-of-the-art.

4. The proposed method scales to large networks and can be used with arbi-
trary node representation learners.

5. We re-implemented NetMF (one of the embedding methods used) in Py-
Torch [34] for maximum efficiency and for improved scalability. The method
runs on GPGPUs, as well as in parallel on CPUs.

6. On a real-life biological network we showcase how the communities de-
tected with SCD can be interpteted via external background knowledge in
the form of ontologies, yielding simple rules which describe (in a human-
understandable way) the detected communities.

In the following sections, we start with the related work in Section 2. In the
central section of this paper we present the proposed methodology (Section 3).
We describe the empirical evaluation of the proposed methodology in Section 4,
followed by the results related to community detection capabilities of SCD
(Section 5). This is followed by presenting a method enabling the interpretation
of the obtained communities (Section 6). We finally discuss the obtained results
along with further work (Section 7).

2 Related work

In this section we discuss recent attempts at community detection from node
embeddings. We begin by describing state-of-the-art methods for network em-
bedding (Section 2.1), followed by the presentation of community detection
methods (Section 2.2). This two methodologies form the basis of the proposed
embedding-based Silhouette community detection algorithm (SCD), presented
in Section 3. The communities discovered by SCD are in Section 6 explained
using semantic subgroup methodology, briefly outlined at the end of this sec-
tion (Section 2.3).

2.1 Network embedding

A series of the recently introduced methods from the field of representation
learning attempt to learn from complex networks by first transforming them
into a vectorized form, and then performing a desired down-stream learning
task. Such embeddings (real-valued, vector representations of nodes) are for ex-
ample useful for construction of large-scale recommender systems and similar
tasks [59]. Some of the well known node embedding algorithms include Deep-
Walk [35], its extension node2vec [16], LINE [50], struc2vec [38] and PTE [49].
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The common property of these algorithms is that they perform the so-called
“shallow embedding”, exploiting only a given network’s adjacency structure.
On the other hand, apart from the adjacency structure, methodology from the
growing field of geometric deep learning attempts to also exploit various node
or edge attributes, present in real-world networks. Intensive development of
such methods started with the recently introduced graph convolutional neu-
ral networks [13], as well as for example the graph attention networks [54],
graphSAGE [19] and many others, recently summarized in [8, 55].

The common point to all of the aforementioned methods is, they mostly
produce real-valued matrices, representing various aspects of a network, let
that be the embeddings of desired subnetworks or just network nodes. Such
vectorized form of e.g., nodes is a suitable input for the body of well established
unsupervised pattern detection methods, such as for example the k-means [5]
or K-medoids families [33] of algorithms. Such clustering methodology has
been in widespread use in the statistics and machine learning communities
since the 1960s.

Cluster quality can be evaluated with several measures, including Davies-
Bouldin Index [11], Calinski-Harabasz Index [24], Fowlkes-Mallows scores [14]
and the Silhouette score [42]. The latter, used in this work, is described in
detail in Section 3.3.1.

2.2 Community detection

The field of community detection attempts to identify densely connected sub-
networks with relevant, potentially causal meaning. As searching the space
of all communities is prohibitively expensive [7], heuristic-based approaches
are developed, sourcing their principles from many fields of science, including
physics, biology, sociology and other [20,21,26].

Established community detection algorithms operate on a network’s adja-
cency structure directly, and are thus specialized only for this task. Examples
of such algorithms include the Louvain algorithm [12], which maximizes the
modularity score that approximates the network’s connectivity patterns so
that densely connected parts of the network remain grouped. Another well
established algorithm is InfoMap [40], which operates using the ideas from the
information theory. It encodes sampled random walks and attempts to find
codewords, i.e. structures representing communities, so that their length is
minimized. Intuitively, it samples the “information flow” across the network
and maximizes such network partition, so that the flow remains captured in
densely connected parts of a given network. Both InfoMap and Louvain algo-
rithm scale to massive, real-world networks. The InfoMap also offers the insight
into hierarchical community organization, which is also commonly present in
real-world networks. Other recently introduced algorithms, which perform ap-
proximately the same as InfoMap and Louvain algorithm include, for exam-
ple, Grothendieck’s inequality communities [17] and SCORE [23]. We refer the
reader to [20] for a more extensive overview.
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Quality of community detection can be evaluated with several measures,
including ARI (Adjusted Rand Index) [37], NMI (Normalized Mutual Informa-
tion) [51] as well as Modularity Score [9]. These measures, used in this work,
are presented in Section 4.4.

2.3 Semantic subgroup discovery

Semantic subgroup discovery (SSD) [28, 52] is a field of subgroup discovery,
which uses ontologies as background knowledge in the subgroup discovery pro-
cess. This methodology is capable of inducing rules from classification data,
where class labels denote the groups for which descriptive rules are learned.
In semantic subgroup discovery, ontologies are used to guide the rule learning
process. For example, the Hedwig algorithm [1,52] (used in this work) accepts
as input a set of class-labeled training instances, one or several domain on-
tologies, and the mappings of instances to the relevant ontology terms. Rule
learning is guided by the hierarchical relations between the considered ontol-
ogy terms. Hedwig is capable of using an arbitrary ontology to identify latent
relations explaining the discovered subgroups of instances. The result of the
Hedwig algorithm are descriptions of target class instances as a set of rules
of the form TargetClass ← Explanation, where the rule condition is a logical
conjunction of terms from the ontology. The details of the community-based
semantic subgroup discovery approach [46, 48] used in this work are provided
in Section 6.1.2.

3 Silhouette community detection

In this section, we present the proposed method we named Silhouette Com-
munity Detection (SCD). We begin by describing the general setting and the
rationale that led us to the proposed approach. We continue by describing the
notions of network embedding, as well as the Silhouette score we adapt for the
task of community evaluation. We finally present the formal description of the
proposed approach along with the analysis of its computational and spatial
complexity.

3.1 Definitions

This section serves as the introduction to the concepts used throughout this
work. We first define the types of networks we consider, followed by definition
of the community detection task.

Definition 1 (Weighted network) A weighted networkG is a tuple (N,E,w),
where N is the set of nodes and E is the set of edges defined as unordered node
pairs. The weight function w maps from edges to the field of real numbers, i.e.
w : E → R+, assigning a weight to each edge.
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The proposed method also naturally handles unweighted networks, which
can be understood as weighted networks where all weights are set to 1.

Definition 2 (Network embedding) Given a network G = (N,E,w), a
network embedding of G is a mapping f : G → R|N |×d, where N is the set
of network nodes. The value d is a parameter of the embedding referred to as
the latent dimension of the output vector space.

We do not explicitly define the properties of f , as the wealth of existing
methods exploits various aspects of G. Note that when the value of the em-
bedding dimension d is 2, the embedding is a collection of pairs of real values,
which can easily be visualized. The goal of network embedding methods is
to maintain the relevant graph-topological properties in the obtained vector
space as accurately as possible.

We continue by defining the notion of clustering, as used throughout this
work.

Definition 3 (Clustering) A clustering function c is a mapping c : R|N |×d →
N|N |. Each element of the resulting vector represents the label of the cluster,
assigned to the corresponding row of the input matrix. The number of clusters
k can be defined upfront, in which case numbers from 1 to k serve as labels
for the clusters to which the input vectors belong.

We conclude our list of definitions with the notion of community detection.

Definition 4 (Community detection) Let G represent a network as de-
fined above. Let P (G) represent a partition of G into n non-overlapping sub-
networks {G1, G2, . . . Gn}. Community detection refers to the process of find-
ing P (G) with respect to a quality function q : P (G)→ R, such that the value
of q is maximized.

Note that the definition of q (community scoring function) was not explicitly
stated, as existing community detection algorithms optimize for different q.
Examples of well known q include modularity (Louvain algorithm) and average
description code length (InfoMap).

3.2 Network representation learning

In this section, we discuss the two node embedding methods we used through-
out the empirical evaluation. Both methods were re-implemented using effi-
cient libraries for sparse matrix manipulation, which we also consider as added
value of this work.

3.2.1 Embedding by factorization

Network embedding algorithms map input networks to dedicated vector spaces,
where a node’s neighborhood’s properties are kept approximately intact. Since
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the considered networks do not contain any node or edge features apart from
their weights, we consider shallow network embeddings. We first describe
NetMF, a recently introduced network embedding methodology, which im-
plements the embedding process as implicit matrix factorization [36]. For ex-
ample, the well known DeepWalk algorithm [35] was shown to approximate
the following matrix:

MDeepWalk = log

(
vol(G)

(
1

T

T∑
r=1

(D−1 ·A)r
)
·D−1

)
− log b;

where T is the context window size, b the number of negative samples, D =
diag(d1, . . . , d|N |), where di represents generalized degree of node i and A
the adjacency matrix, and vol(G) is the volume of a weighted graph, defined
as:
∑

i,j Ai,j . Such network embedding ideas originate from the initial word
representation learner word2vec [29]. We re-implemented NetMF in PyTorch,
as the original version was implemented in now deprecated Theano library [6].
We refer the interested reader to the original paper for theoretical details
regarding the method [36].

3.2.2 Embedding by personalized node ranking

The other node embeddings we test are Personalized PageRank vectors, ob-
tained by the Personalized PageRank with Shrinking algorithm, recently in-
troduced as part of HINMINE methodology [25]. Here, vectors representing
personalized node ranks are computed using the power iteration discussed
next, whose output consists of P-PR vectors.

γu(i)(k+1) = α ·
∑
j→i

γu(j)(k)

doutj

+ (1− α) · vu(i); k = 1, 2, . . .

For each node u ∈ V , a feature vector γu (with components γu(i), 1 ≤
i ≤ |N |) is computed by calculating the stationary distribution of a random
walk, starting at node u. The stationary distribution is approximated by using

power iteration, where the i-th component γu(i)(k) of approximation γ
(k)
u is

computed in the k + 1-st iteration as follows:
The number of iterations k is increased until the stationary distribution con-
verges to the stationary distribution vector (P-PR value for node i). In the
above equation, α is the damping factor that corresponds to the probability
that a random walk follows a randomly chosen outgoing edge from the current
node rather than restarting its walk. The summation index j runs over all
nodes of the network that have an outgoing connection toward i (denoted as
j → i in the sum), and doutj is the out degree of node dj . Term vu(i) is the
restart distribution that corresponds to a vector of probabilities for a walker’s
return to the starting node u, i.e. vu(u) = 1 and vu(i) = 0 for i 6= u. This
vector guarantees that the walker will jump back to the starting node u in
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case of restart1 [32]. The HINMINE version of this algorithm was additionally
parallelized via Multiprocessing library2 where speedups from 100% to 400%
were observed.

3.3 Cluster detection

First, we formally state the clustering problem being solved. Let emb=f(G)
represent a computed d-dimensional node embeddings, thus emb ∈ R|N |×d.
Obtaining a node partition using a clustering algorithm (representing a map-
ping c) of choice can thus be stated as

P (G) = c(f(G)).

In this work, we consider clustering using efficient miniBatch k-means algo-
rithm [44], which we briefly discuss next. Given a set of row vectors X ⊆ Rd,
the objective of miniBatch k-means is to find a set C of k cluster centers
C = {ci, . . . , ck} ⊆ Rd which minimizes the following sum:∑

r∈X
min
c∈C

(
dist(r, c)

)
The dist in this work denotes the Euclidean distance (‖r − c‖2), even though
other distances can be used. This problem, albeit being NP-hard, can be ap-
proximated well using random cluster initializations. In this work, we exploit
the k-means++ algorithm for the initialization step (see [3] for more details).
The considered miniBatch k-means algorithm also leverages the notion of
sparse cluster centres, inspired by the power law nature of word occurrences.
Here, the idea is to emphasize the points which occur commonly, as the ma-
jority of the points (e.g., words) could be very sparsely distributed and thus
contribute little to cluster assignment. One of the reasons we selected this vari-
ation of k-means as the clustering detection method is also the similar, heavy
tailed nature of node connectivity, resembling that of word occurrences. This
observation indicates that similar heuristics could perform well. The miniBatch
k-means algorithm is thus used to extract k clusters from the node embedding
space. We then discuss, how to detect whether the k clusters represent a good
partition.

3.3.1 Estimating cluster quality with Silhouette score

The Silhouette score was initially introduced in [42]. The score was successfully
used previously for development of novel categorical data clustering algorithms
[2], as well as text clustering tasks [22], and can be defined as follows. Assume

1 If the binary vector was composed exclusively of ones, the iteration would compute the
global PageRank vector, and the considered equation would be to reduce to the standard
PageRank iteration.

2 https://docs.python.org/2/library/multiprocessing.html

https://docs.python.org/2/library/multiprocessing.html
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the input data was clustered into k distinct clusters. The average distance
between a given point i and the remainder of the cluster is computed as:

a(i) =
1

|Ci| − 1

∑
j∈Ci\{i}

dist(i, j);

where the distance dist is defined by the user. In this work, we employ the
Euclidean distance, thus computing d(i, j) = ‖i − j‖; The Ci corresponds to
the cluster the i is part of. The second part of the Silhouette score estimates
the dissimilarity with other clusters as follows:

b(i) = min
i6=j

1

|Cj |
∑
j∈Cj

dist(i, j);

thus computing the smallest average distance of i to the points of the cluster
Cj . The Silhouette of a single point can be defined as:

s(i) =
b(i)− a(i)

max [a(i), b(i)]
;

which holds if Ci > 1, and s(i) = 0 if Ci = 1. Note that the s(i) falls in the
interval [−1, 1]. Intuitively, very low Silhouette values represent non-distinct
clustering, values around 0 represent overlapping clusters and higher values
represent more defined clusters. Finally, estimating the global clustering trans-
lates to averaging the Silhouette score across the points of interest, as follows:

Silhouette(P (G)) =
1

|N |
∑
i∈N

s(i);

Obtaining the Silhouette score for each node thus corresponds to the esti-
mate of how well a given node is clustered, whereas averaging the scores across
the considered partition P (G) gives an estimate of the global clustering quality
score.

3.3.2 SCD formulation

We discussed first how the embedding space of nodes can be subject to k-means
clustering, yielding potential node partition. Second, we showed how a given
partition can be evaluated in terms of intra- and inter- cluster homogeneity
via the Silhouette score. The missing part to be discussed in this section is the
formal statement of the optimization problem at hand, as well as the numeric
procedure used to derive the final k.

For readability purposes, we define as SilhouetteG(k) the Silhouette score
obtained using a given k (parameter of the k-means algorithm). We thus as-
sume the network node embeddings were obtained from G before running the
clustering algorithms. The proposed Silhouette Community Detection (SCD)
algorithm, summarized in Algorithm 1 works as follows.
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Algorithm 1: Silhouette Community detection (SCD)

Data: Network G
Parameters : Stopping criterion w, set of embedding parameter sets P,

Embedding algorithm f , maximum number of considered clusters
K, cluster evaluation interval γ

1 globalQuality ← −∞ ; . Initialize split quality.

2 optimalSplit ← 1 ; . Initialize optimal split.

3 optimalPartition ← ∅ ; . Initialize optimal partition.

4 validRange ← generateValidRange(K,γ); . Initial cluster range.

5 for parameterSet ∈ P do
6 emb ← f(G, parameterSet) ; . Embed nodes.

7 stoppingCriterion ← w;
8 improved ← False ;
9 while k ∈ validRange and stoppingCriterion 6= 0 do

10 partition ← MBKMeans(k, emb); . Cluster.

11 quality ← Silhouette(partition); . Evaluate.

12 stoppingCriterion ← stoppingCriterion - 1;
13 if quality > globalQuality then
14 imporoved ← True;
15 globalQuality ← quality; . Update global quality.

16 optimalPartition ← partition ; . Assign new optimum.

17 optimalSplit ← k ; . Assign optimum number of clusters.

18 stoppingCriterion ← w ; . Reset stopping criterion.

19 end

20 end
21 if Improved then
22 optimalPartition ← fineGrained(optimalSplit, emb);
23 globalQuality ← Silhouette(optimalPartition) ; . Update global quality.

24 end

25 end
26 return optimalPartition;

The algorithm traverses the space of embeddings of interest (P). For each
embedding, computed using an embedding procedure f , a parameter sweep
across values of k is conducted. SCD employs a two-step approach to finding
the optimal k. First, it traverses k values defined as part of the validRange—
an interval of potential Silhouette optima. This range of k values is initially
determined based on K, the maximum number of clusters to be considered,
and γ, an interval of k values being considered. We further demonstrate how
γ can be automatically determined based on K in Section 3.4. We define this
interval as equally distributed natural numbers, where the distance between
the numbers is uniformly distributed (e.g., we take every 10-th number on the
interval between 1 and 1,000). If the global Silhouette is improved during this
parameter sweep (MBKMeans represents the miniBatch k-means algorithm
and Silhouette the computation of a given partition’s score), the k, as well as
the exact partition are stored.

The second step of finding the optimal k is a fine-grained optimization step
(fineGrained, line 22). Here, the neighborhood of the previously identified k
(elements of validRange) is explored in more detail—an interval around the
k is exhaustively inspected. We additionally introduced a stoppingCriterion
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parameter, which stops the optimization, if Silhouette is not improved in w
iterations. Once the SCD concludes, it yields the partition of the nodes (or
elements of the vector space) into a finite set of communities.

To address the problem of finding the optimal k, we thus consider the
following steps. First, the space of possible k values is not densely defined i.e.
we test only every n-th k. Second, we introduce a stopping criterion—when no
improvement is made for enough updates, the algorithm starts a fine-grained
search around a currently optimal k identified as part of the initial, coarse-
grained k sweep.

3.4 Formal analysis

In this section we overview and summarize the key parts of the proposed
Silhouette community detection algorithm. We begin by formulating the opti-
mization problem that is being solved, followed by the analysis of the relevant
aspects of the computational complexity.

Let P represent the set of the node embedding parameters, K the set of
candidate k values representing the number of clusters. SilhouetteGlobal(p, k)
represents the graph G’s partition scored with a Silhouette score obtained
when parameter set p was used along with k clusters to obtain communi-
ties. The proposed Silhouette community detection algorithm thus attempts
to solve the following optimization problem:

Pfinal(G) = arg max
k∈K,p∈P

[
SilhouetteGlobal(k, p)

]
.

As the quality of the obtained communities depends on the clustering as well
as the embedding algorithm, we then discuss the computational complexity
of the two steps. Contemporary node embedding algorithms can perform in
subquadratic time with respect to the number of nodes and have spatial com-
plexity, which is linear with respect to the number of edges. The k-means clus-
tering family of algorithms is quadratic in the worst case, yet, the miniBatch
sparse version used in this work in practice performs very fast, as it takes the
sparsity of the input space into account. Its complexity is O(φ ·k · |N | ·d) for a
given k, where φ corresponds to the number of steps required by k-means++
initialization. The Silhouette computation can be performed in O(|N |2 · d)
time, indicating that the dimension of the embedding plays an important role
in the performance of this final step. As one of the main bottlenecks of the
proposed method, we recognize the number of cluster evaluations. Thus, the
validRange method, discussed in Algorithm 1, can contribute notably to the
execution time (values of k considered). The total computational complexity
of the approach is thus O(φ · k · |N |2 · d). As shown in the following sections,
node embeddings are in practice computed less frequently than the clustering,
rendering the method more sensitive to the k parameter than to the embedding
setting considered. Finally, as the dimensionality d of the embedding can vary
from as little as 5 (hyperbolic embeddings [30]) to as much as 1000 or more,
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we note that selecting the sufficient (and low-dimensional) network embedding
can offer realizable speedups of several orders of magnitude.

Finally, we analytically derive an estimate for γ, the size of the k sampling
interval with respect to the maximum number of communities expected (K)
as follows:

γ =
3
√
K2

For readability purposes, we omit the derivation of this estimate to Appendix A.
Note that the rationale behind introduction of this estimate is performance,
as compared to the worst case, where K different cluster sizes are considered,
here we consider a substantially lower number and thus speed up the clus-
ter detection process (this can result in an order of magnitude speedups). In
the following sections, we discuss the empirical setting, used to evaluate the
performance of the proposed SCD algorithm.

4 Experimental setting

In this section, we discuss the empirical evaluation used to assess the perfor-
mance of the proposed approach. We first discuss the baseline network com-
munity detection methods, and continue with the description of the networks
the methods were tested on.

4.1 Considered algorithms

We tested three existing community detection algorithms, described in Sec-
tion 4.1.1, and two variants of SCD, described in Section 4.1.2.

4.1.1 Baselines

We compare the proposed SCD approach against the following methods:

– InfoMap [41]. This information flow-based algorithm represents a gold
standard for community detection task.

– Louvain algorithm [9]. Similarly to InfoMap, Louvain algorithm is one
of the most widely used community detection algorithms.

– Label propagation [10]. This simple baseline propagates the information
in a breadth-first type of manner and serves as a weak baseline.

4.1.2 SCD implementations tested

We tested two implementations of SCD, based on representations, obtained
by two network embedding algorithms; namely:

– SCD - NetMF. The Silhouette score optimization is conducted based on
node representations obtained by the NetMF approach, which we re-wrote
in PyTorch [34] for the purpose of this work.
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– SCD - PPR. The Personalized PageRank with Shrinking algorithm (PPR)
is used to obtain stationary distributions of random walkers, representing
a series of features for each node. The implementation is based on the one
used by the HINMINE algorithm, introduced in [25]. We used the version
of the HINMINE algorithm which was further parallelized in [45].

4.2 Networks considered

In this section, we discuss the networks we used for empirical evaluation of the
proposed approach.

4.2.1 Synthetic networks

We conducted benchmarks over a space of synthetic Lancicinetti-Fortunato-
Raddichi (LFR) networks [27]. This family of network models generates net-
works with corresponding ground truth communities. Such networks are com-
monly used to evaluate the community detection properties over a larger space
of graphs with diverse topological properties [26,56].

The considered LFR networks are determined by the following parameters:

– Total number of nodes.
– Average node degree.
– Maximum node degree.
– Mixing. This parameter determines how well defined the generated commu-

nities are. It spans from 0 (very well defined) onwards, where, for example,
graphs with mixing=1 have very poorly defined communities.

– Degree exponent. Exponent of the node degree distribution (e.g., 2 implies
power law network)

– Community exponent. Exponent determining the community sizes.

We generated the space of networks defined by combinations of the follow-
ing parameters:

– Numbers of nodes:: [100,500,750,1000,2500,5000,10000]
– Average node degrees: [15,30,50]
– Maximum node degrees: [10,50,100,500]
– Mixing: [0.1,0.2,0.5,0.7,0.9]
– Degree exponent: 2
– Community exponent: 1

In total, we generated 234 valid networks with various topological proper-
ties. Example LFR network with highlighted communities is shown in Figure 2

4.3 Real social network used

Further, we test how well communities can be detected on a network with
known ground-truth communities corresponding to E-mail network of one of
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(a) |N | = 1,000 (b) |N | = 5,000 (c) |N | = 10,000

Fig. 2: Three examples of LFR networks. The largest example LFR network
consists of 10,000 nodes and 302,160 edges. The mixing parameter for these
networks is set to 0.1, indicating very well defined communities. We colored
the first 100 communities by size (random colors).

the large European research institutions [57]. An edge (u, v) in the network
denotes that the person u sent person v at least one email. The e-mails only
represent communication between institution members (the core), and the
data set does not contain incoming messages from or outgoing messages to
the rest of the world. The network consists of 1005 nodes and 25,571 edges,
and is, along with its ground truth communities, visualized in Figure 3. The

Fig. 3: E-mail ground truth communities (departments of senders).
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data set also contains ”ground-truth” community memberships of the nodes.
Each individual belongs to exactly one of the 42 departments at the research
institute.

4.4 Community quality evaluation measures

An established approach to evaluating the quality of community detection
algorithms is via ground truth communities. We assume the “optimal” partition
P (G) (ground truth) is known upfront. A partition similarity score (as defined
next) is used to compare the ground truth partition with the one returned by
a community detection algorithm.

We next discuss the measures of performance we used to evaluate how well
a given algorithm is able to detect communities. We employ the following three
measures.

Normalized Mutual Information (NMI). This index is defined as fol-
lows:

NMI(Y,C) =
2× I(Y ;C)

H(Y ) +H(C)
;

whereH(C) denotes the entropy of the assigned labels C, theH(Y ) entropy
of the ground-truth labels Y . The I(Y ;C) denotes the mutual information
[51] between Y and C. Thus, the larger the score, the better the matching.

Adjusted Rand Index (ARI). This index measures a similarity between
two clusterings by considering all pairs of samples and counting pairs that
are assigned in the same or different clusters in the predicted and true
clusterings. For readability purposes we do not define it here, yet we refer
the reader to [37] for the exact formulation.

Modularity. The modularity measure [9] is defined for a network partitioned
into communities as follows:

Q =
1

2m

n∑
v=1

n∑
w=1

[
Av,w −

kvkw
2m

]
δ(cv, cw)

where n represents the number of nodes and m the number of edges,
[Av,w]nv,w=1 denotes the adjacency matrix (i.e. Av,w is 1, when u and v
are connected by an edge, and 0 otherwise), kv denotes the degree of the
v-th node and cv denotes the community the v-th node is assigned to. The
δ(cv, cw) represents the Krönecker delta function, which amounts to 1 when
cv = cw and 0 otherwise. The value kvkw

2m represents the average fraction
of edges between nodes v and w in a random graph with the same node
degree distribution as the considered graph. Note that some of the base-
line methods (e.g., Louvain algorithm) directly optimize the modularity,
and are thus expected to perform favorably with respect to this metric.
However, we believe computing modularity offers additional insights with
respect to complementarity with other metrics, and potentially offers addi-
tional proof that the proposed Silhouette-based optimization indeed detects
relevant signal.
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4.5 Other technical details

In this section, we discuss some hardware-specific implementation details. The
machine the benchmarks were run on was a Intel(R) Xeon(R) Gold 6150 CPU
@ 2.70GHz processor equiped machine with 64GB of RAM. The machine also
has a Nvidia Tesla GPU, which we used to test whether our NetMF imple-
mentation works as expected (on GPU). For the actual benchmarks, we did
not use GPU for factorizing the network, in order to more easily compare the
execution times on CPU only. We intentionally didn’t use GPU to demon-
strate that no specialized hardware is needed to obtain competitive results.
The LabelPropagation baseline was implemented using [18], the Louvain al-
gorithm implementation, as well as a wrapper for the InfoMap binary can be
found in [47]. The validRange for the empirical evaluation was set to the in-
terval [5, |N |, 10]. The embedding space parameters used during optimization
were: number of negative samples ({1, 5, 20}), window size ({1, 3, 5, 10, 30, 50})
and embedding dimension ({16, 32, 64, 128, 256}). In Appendix B, we explain
how the social network’s Silhouettes were normalized based on the level of
embedding dimension which yielded more robust results.

5 Results—Community detection benchmark

In this section, we present the results of the empirical evaluation. We first
discuss the results obtained on synthetic benchmark networks (Section 5.1),
followed by the results on the real-world social network (Section 5.2).

5.1 Results on synthetic networks

Analyzing the 2-step search for the optimal value of k in Algorithm 1, we ob-
serve the proposed optimization in majority of cases finds a sufficient optimum—
once the local optimum is found, some additional steps are performed to eval-
uate whether there exists a better solution in close range. In this work, we do
not focus extensively on estimating the initial range of k, yet we believe such
estimations could offer potentially better detection.

The visualization of overall differences between the number of estimated
communities and the number of ground-truth ones is shown in Figure 4 — the
horizontal line represents the perfect match in the number of detected with
that of ground truth communities. We can observe that the proposed SCD
over-estimates the number of communities when small number of ground truth
communities is present. However, the numbers stabilize when more than 100
communities are present. On the other hand, we can observe larger deviations
with Louvain algorithm when the larger number of communities are present,
indicating that Louvain algorithm algorithm under-estimates the number of
communities. Similarly to SCD, InfoMap also over-estimates the number of
communities when many communities are present, but for large numbers of
ground truth communities, the over-estimation is more evident in InfoMap.
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Fig. 4: Differences in the number of estimated communities (on LFR networks).
The horizontal line represents optimal outcome with respect to the number of
detected communities.

We believe performance with respect to the mixing parameter determining
LFR graphs is of crucial importance, as it offers insight into how the considered
community detection algorithms behave when communities are more or less
defined. We show overall results, summarized with respect to this aspect in
Table 1.

The results offer insights into performance of different algorithms with
respect to various measures. As expected (and discussed in Section 7), the
modularity score, which is optimized by the Loivain algorithm, is the high-
est with this algorithm. Other algorithms interchangeably outperform one
another, indicating optimizing different metrics potentially leads to special-
ization in different parts of the networks space, thus leading to performance
trade-offs.

5.2 Results on a real network

We also test the performance on a real world E-mail network with known
ground truth communities.

The proposed SCD approach shows best performance on the mentioned
real-life network (Table 2). The best performing embedding w.r.t NMI score
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Table 1: Results over the space of synthetic networks. Values represent averages
for each mixing level accross other parameters. We highlight top performers
(first and second), with respect to NMI, as well as ARI scores. The Label-
Propagation algorithm detects communities at higher mixing very poorly, we
marked such runs with ”*”.

Mixing Algorithm NMI ARI Modularity
0.1 Infomap 0.994 ± 0.028 0.996 ± 0.02 0.816 ± 0.118
0.1 LabelPropagation 0.988 ± 0.038 0.96 ± 0.075 0.81 ± 0.133
0.1 Louvain algorithm 0.98 ± 0.031 0.925 ± 0.115 0.817 ± 0.115
0.1 SCD - NetMF (ours) 0.96 ± 0.089 0.924 ± 0.122 0.754 ± 0.195
0.1 SCD - PPR (ours) 0.936 ± 0.051 0.867 ± 0.114 0.364 ± 0.307
0.2 Infomap 0.922 ± 0.359 0.939 ± 0.223 0.698 ± 0.181
0.2 LabelPropagation 0.743 ± 0.961 0.832 ± 0.259 0.674 ± 0.217
0.2 Louvain algorithm 0.969 ± 0.057 0.898 ± 0.136 0.713 ± 0.127
0.2 SCD - NetMF (ours) 0.949 ± 0.11 0.911 ± 0.151 0.662 ± 0.174
0.2 SCD - PPR (ours) 0.907 ± 0.09 0.815 ± 0.154 0.305 ± 0.269
0.5 Infomap 0.715 ± 0.903 0.848 ± 0.32 0.411 ± 0.152
0.5 LabelPropagation 0.378 ± 1.174 0.398 ± 0.3 0.326 ± 0.21
0.5 Louvain algorithm 0.846 ± 0.238 0.657 ± 0.274 0.435 ± 0.102
0.5 SCD - NetMF (ours) 0.856 ± 0.197 0.75 ± 0.278 0.377 ± 0.137
0.5 SCD - PPR (ours) 0.75 ± 0.233 0.502 ± 0.273 0.157 ± 0.179
0.7 Infomap 0.498 ± 1.135 0.471 ± 0.467 0.166 ± 0.134
0.7 LabelPropagation (*) 0.679 ± 3.188 0.0 ± 0.0 0.0 ± 0.0
0.7 Louvain algorithm 0.648 ± 0.293 0.325 ± 0.241 0.262 ± 0.04
0.7 SCD - NetMF (ours) 0.492 ± 0.306 0.258 ± 0.367 0.118 ± 0.103
0.7 SCD - PPR (ours) 0.407 ± 0.233 0.119 ± 0.195 0.03 ± 0.055
0.9 Infomap 0.493 ± 2.529 0.001 ± 0.012 0.031 ± 0.051
0.9 LabelPropagation (*) 0.744 ± 3.196 0.0 ± 0.0 0.0 ± 0.0
0.9 Louvain algorithm 0.052 ± 0.024 0.002 ± 0.003 0.164 ± 0.043
0.9 SCD - NetMF (ours) 0.209 ± 0.109 0.003 ± 0.007 0.024 ± 0.03
0.9 SCD - PPR (ours) 0.193 ± 0.176 0.019 ± 0.077 0.008 ± 0.024

Table 2: Community detection results on a real-world network representing
E-mail senders. The LabelPropagation algorithm was not able to detect any
communities, values of all scores were lower than 10−6.

Algorithm NMI ARI Modularity
InfoMap 0.654 0.301 0.39

Louvain algorithm 0.577 0.300 0.41
LabelPropagation < 10−6 < 10−6 < 10−6

SCD - PPR 0.552 0.235 0.31
SCD - NetMF (d = 128) 0.720 0.437 0.330
SCD - NetMF (d = 32) 0.711 0.462 0.342

was of dimension 128, with negative sampling parameter set to 1 and window
size of 5. Interestingly, we also state the performance of a much smaller embed-
ding (d = 32), where the ARI score was better than in the case of the larger-
dimensional one. Here, negative sampling was set to 1 and window size to 3.
This result indicates that even embeddings of lower dimensionality potentially
capture enough node similarity information that they are successfully grouped
into communities. We additionally visualize the results using the Py3plex [47]
library in Figure 5. The colors are based on community sizes—when com-
munities are obtained (or given), they are sorted by size and colored with a
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(a) Ground truth (b) LabelPropagation (c) Louvain algorithm

(d) InfoMap (e) SCD - PPR (f) SCD - NetMF

Fig. 5: Visualization of E-mail network communities obtained using different
algorithms. Communities are colored by size. The LabelPropagation and SCD
- PPR performed the worst, which is also apparent from the visualizations—
LabelPropagation did not detect any communities, whereas SCD - PPR de-
tected too few.

predefined set of colors. Thus, the top three communities by size are colored
red, green and blue. InfoMap, as well as SCD-NetMF (d = 128) approaches
detected the largest ground truth community, which is originally present in
two parts (Figure 5, subfigure a)), and as such harder to detect. Similarly to
the results obtained on synthetic networks, the Louvain algorithm, InfoMap
and SCD - NetMF perform well—the communities they emit are visually dis-
tinct and resemble the ground truth network’s ones. We can also observe SCD
- PPR identified fewer communities compared to other approaches, indicat-
ing that taking whole stationary distributions into account is potentially not
optimal.

We next present the results of exhaustive empirical validation of the pro-
posed Silhouette optimization procedure. For this task, we used the real-world
social network discussed previously, and explored how the results of the pro-
posed optimization correspond to a situation, where each k is computed (ex-
haustive evaluation γ = 1). The results for different values of k are visualized
in Figure 6. Here, we normalized individual Silhouette scores obtained for dif-
ferent γ values for readability purposes. It can be observed that when different
intervals of k considered (denoted as k in the Figure 6) yield very similar re-
sults, where the number of communities is between 30 and 50 (number of
ground truth communities is 42). This result indicates that the proposed SCD
is not sensitive to γ, indicating potential speedups can be obtained, should
this interval be selected based on e.g., a given network’s properties—such sit-
uations are shown with pink (K = 300) and violet (K = 100), indicating the



20 Blaž Škrlj et al.

proposed γ estimation offers good results. Note that individual SCD runs were
for this figure run with stopping parameter set to 5—if after 5 iterations no
improvement was made, the current optimum was returned as the result. The
global Silhouette optimum (red points, indicating exhaustive search) was when
k = 54.

6 Explaining communities with semantic subgroup discovery

In this section we discuss how the obtained communities can be combined with
background knowledge in the form of ontologies to provide human-understandable
rules, describing individual communities.

6.1 Methodological background

This section discusses how the in-house CBSSD methodology can be employed
for obtaining such descriptions [46]. We first introduce the notions of subgroup

Fig. 6: Visualization of solutions found when different intervals of k are con-
sidered. The situation where each k is tested corresponds to γ = 1. The larger
markers denote optima found when different intervals of k are considered. It
can be observed, all γ variants yield similar number of communities (≈ 50),
which is close to the ground truth of 42 communities.
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and semantic subgroup discovery. Next, we discuss how communities can be
understood as target classes for the task of semantic subgroup discovery. We
also describe Hedwig, a semantic rule learner, which was for the purpose of
this work parallelized to scale to thousands of candidate communities. In the
following sections we discuss the key ideas of semantic subgroup discovery, as
used in the remainder of this work.

6.1.1 Subgroup discovery

Subgroup discovery (SD) is a machine learning task where given a set of target
classes and a set of instances, the goal is to identify significant patterns which
describe a set of class-labeled instances (when compared to instances labeled
differently). The goal of SD is thus similar to that of classification, with the
main difference that in SD the emphasis is on individual patterns, which are
symbolic, and thus explainable, whereas classification emphasizes construction
of complete models (not necessarily explainable). The final result is thus not
a predictive model but rather a series of interpretable rules, which serve to
better understand the instance space.

Definition 5 (Supervised learning) More formally, given a set of classes
T and a set of class-labeled data instances D, the goal is to approximate the
mapping Θ : D → T , which can explain/predict instances d ∈ D.

We next define rule learning as considered in this work.

Definition 6 (Rule learning) Let R denote a set of all rules learned from
given data D and class labels T . In rule learning, best rules r1,...,n ∈ R are
found by optimizing a predefined success criterion, evaluated using a scoring
function ε, ε : ri → R, that assigns each identified rule ri a corresponding score
in ε(ri) ∈ R.

In this work, we focus on subgroup discovery, a subfield of supervised de-
scriptive rule induction [31]. Here, a learner Θ is applied on a data set D
labelled with target classes from D. Similarly to supervised learning, Θ aims
at identifying and describing interesting subsets of D which are labelled with
a given target class t ∈ T . Unlike supervised learning, where the result is a
predictive model, the final result of descriptive learning are sets of rules. Each
rule explains a subset of positive examples of selected class t. In general, the
optimal set of rules is obtained by maximizing rule quality ε.

6.1.2 Semantic subgroup discovery

Semantic subgroup discovery (SSD) [28,52] is a field of subgroup discovery that
uses ontologies as background knowledge in the subgroup discovery process.
The goal of SSD is to induce rules from labelled data, where (class) labels
denote the groups for which descriptive rules are learned. For example, the
Hedwig algorithm [1, 52] (used in this work) accepts as input a set of class-
labeled training instances, one or several domain ontologies, and the mappings
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of instances to the relevant ontology terms. Hedwig was successfully applied
in the biomedical domain [1], supports RDF-encoded inputs, and is suitable
for working with collections of background knowledge ontologies. Rule learn-
ing performed by Hedwig is guided by the hierarchical relations between the
considered ontology terms. Hedwig is capable of using an arbitrary ontology to
identify latent relations explaining the discovered subgroups of instances. The
result of the Hedwig algorithm are descriptions of target class instances as a
set of rules of the form TargetClass ← Explanation, where the rule condition
(Explanation) is a logical conjunction of terms from the ontology.

Class-labeled rules are usually learned via coverage-based approaches [15].
In this work we follow a different, recently introduced rule learning approach,
which does not use a covering approach. In the selected approach implemented
in the Hedwig algorithm [52, 53], subgroup describing rules are learned using
a specialized beam search procedure, and the output is a set of b rules in the
final beam of size b=|Beam|.

For an interested reader we here explain the formulation for rule induction
used by the Hedwig algorithm. The presented formulation consists of two ob-
jectives; rule uniqueness and rule quality, which together form the joint scoring
function as follows:

Ropt = arg max
R

∑
r∈R ε(r)∑

ri,rj∈R
i 6=j

|Cov(ri) ∩ Cov(rj)|+ 1
(1)

where R represents a candidate set of rules, r ∈ R represents a single rule,
and Cov(ri) denotes the set of examples covered by ri.

Hedwig aims to maximize the numerator of 1 in order to maximize rule
quality of a set of rules. At the same time, it searches for rules that cover
different parts of the example space, which is achieved by minimizing the
denominator, i.e. minimizing the intersection of instances covered by different
rules ri and rj . In Hedwig, a set of rules (a beam of size b) is iteratively
refined during the learning phase using a selected refinement heuristic, such as
for example lift or weighted relative accuracy. The algorithm yields multiple
different rules that represent different subgroups of the data set being learned
on.

6.1.3 Community-based Semantic Subgroup Discovery (CBSSD)

Having defined the notions of rule learning and subgroup discovery, we next
discuss (following [46]) how Hedwig can be adapted for the task of community
enrichment—finding sets of rules which uniquely describe a given community.
The CBSSD step, illustrated in Figure 7, can be understood as a post-hoc
analysis to the proposed SCD. Note that this community explanation step
is part of qualitative analysis, as the obtained patterns do not necessarily
represent causal mechanisms—this part is commonly discussed with domain
experts based on additional experimental evidence. Thus, once communities
are obtained using SCD, they can be enriched via ideas of CBSSD. We next
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Fig. 7: Community-based Semantic Subgroup Discovery. Individual rules, such
as Ri,j,k represent human-understandable descriptions, comprised of terms
(Ti) of individual communities.

describe some of the key ideas of CBSSD, yet direct an interested reader to [46]
for extensive technical details and computational complexity analysis.

Let P1 . . . Pn represent individual communities returned by SCD. Given
background knowledge in the form of an ontology B and an injective mapping
from a graph’s nodes to such knowledge m : N → B, Hedwig is used as
follows: Each Partition is considered as a target class, whilst the remainder of
the network is compared against. Thus, for i-th partition, rules of the form

Pi ← t1 ∧ t2 ∧ · · · ∧ tn

are learned, where t1, t2 . . . tn are elements of B. For each community, a set
of rules is learned, where the number of rules depends on the beam size used
(input parameter).

6.1.4 Speeding up Hedwig

We next discuss the improvements we made to the original Hedwig algorithm
for it to handle larger collections of background knowledge and hundreds of
target classes (as required in this work) As the number of communities can be
in the order of hundreds (or even thousands), one needs to consider |P | (the
number of communities) individual learners. This step can be time consuming
(as shown in [46]), thus we recognized that implementing Hedwig in parallel
could introduce less time overhead. The implementation used in this work
was parallelized at the class level. Here, we recognized as independent each
class-specific learner. Thus, depending on the number of available CPU cores,
Hedwig considers multiple communities simultaneously, offering from 5x to
15x speedups when compared to the original single CPU version.

6.1.5 Parameters of the Hedwig semantic subgroup discovery algorithm

We next discuss how the task of semantic subgroup discovery was performed
on obtained communities. For this task, we consider the Human Affinome,
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a collection of empirical protein interactions curated for the Affinomics con-
sortium. The parsed graph consists of 1,171 nodes and 1,571 edges, with the
average degree of 2.68. The same grid-based search for the maximum Silhou-
ette as in the benchmark experiments (see Section 4.5) was used. The following
parameters were set for Hedwig—semantic subgroup discovery:

– The alpha value for determining rule significance was set to 0.05
– FDR correction was used, where the threshold used was 0.1
– Minimum support required was 0.01
– Beam size of 30 was used
– Depth was set to 10

The background knowledge considered was the whole gene ontology [4], com-
prised, at the time of writing, of more than 40,000 terms.

As evaluation of rules for each community (separately) would be too time
consuming, we selected the communities with the longest term conjuncts, as
well as the most significant rules and performed literature-based evaluation
of rules. As the discovered term conjuncts possibly represent well known bio-
logical interactions, we investigated individual rules separately, and compared
their conjuncts to descriptions of genes, present in the studied community.

6.2 Results

In Section 6.1.5 we demonstrate the overall community detection performance
of the proposed SCD. In this section we show the results of semantic subgroup
discovery on the Affinome protein interaction network. This network was ob-
tained based on extensive experimental evidence, and consists of interactions
related to core metabolism. The communities, detected in the Affinome are
shown in Figure 8.

6.2.1 General overview of results

The SCD algorithm discovered 145 communities. As the purpose of this work is
not to explain every single one, but to demonstrate how they can be explained,
we selected the community with the largest number of rules, as well as the
larger number of multi-term conjuncts. The rules are summarized in Table 3.

The members of the community the rules describe are summarized in Ta-
ble 4.

6.2.2 Interpretation of results

This section interprets how the found rules are associated with the members
of the enriched community. We systematically describe first what a given rule
represents, followed by to what part of the community it maps.

We first observe, that many of the multi-conjunct rules contain the term
“GO:0005515”, which corresponds to “protein binding”. The emergence of
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Fig. 8: Communities in the Human Affinome network

this very general term is expected, as the object of study is a protein inter-
action network. However, we notice that this term always appears in con-
juncts with other terms, such as for example the “GO:0042542” (“response
to hydrogen peroxide”), “GO:0016303” (“1-phosphatidylinositol-3-kinase ac-
tivity”), “GO:0038096” (“Fc-gamma receptor signaling pathway involved in
phagocytosis”) and “GO:0050900” (“leukocyte migration”).

We can observe that “GO:0016303”, the term representing 3-kinase activity
possibly emerged as the result of both PIK3R1, as well as PIK3CB proteins
present in the studied community.

Next, both “GO:0038096”, “GO:0042542”, as well as “GO:0050900” rep-
resent events that are commonly present during immune response. We believe
the aforementioned terms emerged as a consequence of CSF1R (Macrophage-
colony factor receptor), HCK (Tyrosine-protein kinase), as well as SRC (Proto-
oncogene tyrosine kinase). The tyrosine kinases transmit signals from cell sur-
face receptors and play an important role in the regulation of innate immune
responses, including neutrophil, monocyte, macrophage and mast cell func-
tions, phagocytosis, cell survival and proliferation, cell adhesion and migration.
In combination with CSF1R the terms indicate the considered community is
associated with immune response [60].

We discuss the three most significant terms, namely “GO:0007411” (“axon
guidance”), “GO:0038128” (“ERBB2 signaling pathway”) and “GO:0007173”
(“epidermal growth factor receptor signaling pathway”). The CRK protein,
present in the considered community is known to regulate cell adhesion, spread-
ing and migration. The “GO:0038128” represents a signaling pathway com-
prised of tyrosine kinases (present in the considered community). Similarly
the association with the “GO:0007173” term related to epidermal growth fac-
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Table 3: Results of subgroup discovery for the selected community. Sec-
tion 6.2.2 discusses the meaning of the resulting GO terms with respect to
the members of the resulting community.

Conjuncts #Positive Precision Lift Corrected p-value
GO:0007411 8 0.286 31.286 0.000
GO:0038128 6 0.316 34.579 0.000
GO:0007173 6 0.240 26.280 0.000

GO:0050900 ∧ GO:0005515 6 0.188 20.531 0.000
GO:0050900 6 0.167 18.250 0.000

GO:0038096 ∧ GO:0005515 5 0.208 22.813 0.000
GO:0038096 5 0.200 21.900 0.000
GO:0001784 4 0.286 31.286 0.000
GO:0008286 4 0.267 29.200 0.000
GO:0038095 5 0.147 16.103 0.000
GO:0005070 3 0.273 29.864 0.000

GO:0016303 ∧ GO:0005515 3 0.250 27.375 0.000
GO:0008360 ∧ GO:0005886 3 0.214 23.464 0.000

GO:0016303 3 0.200 21.900 0.000
GO:0007169 ∧ GO:0005524 3 0.188 20.531 0.000

GO:0007265 3 0.150 16.425 0.001
GO:0008360 3 0.143 15.643 0.001
GO:0007169 3 0.143 15.643 0.001
GO:0005884 2 0.200 21.900 0.003
GO:0014065 2 0.200 21.900 0.003

GO:0031234 ∧ GO:0004713 2 0.182 19.909 0.004
GO:0071902 2 0.167 18.250 0.005
GO:0097110 2 0.167 18.250 0.005

GO:0004715 ∧ GO:0004713 2 0.167 18.250 0.005
GO:0005901 2 0.143 15.643 0.006
GO:0016337 2 0.143 15.643 0.006
GO:0004715 2 0.143 15.643 0.006

GO:0042542 ∧ GO:0005515 2 0.143 15.643 0.006
GO:0031234 2 0.133 14.600 0.007
GO:0042542 2 0.133 14.600 0.007

tor signaling also corresponds to HRAS (GTPase HRas) and other kinases,
which are known to play crucial roles during epidermal growth [39].

To summarize, the proteins’ functionality is indeed entailed in the obtained
set of rules. Even though the considered community consists mostly of signaling
and growth-related proteins, the related rules summarize key aspects such as
cellular signaling and growth regulation, thus offering a human-interpretable
description of the community without the time-consuming manual search.

7 Discussion and conclusions

In this section we discuss the obtained results, as well as introduce potentially
interesting further work.
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Table 4: Members of the described community.

UniProt ID Gene Name
P27986 PIK3R1 Phosphatidylinositol 3-kinase regulatory subunit alpha
P12931 SRC Proto-oncogene tyrosine-protein kinase Src
P46108 CRK Adapter molecule crk
Q07889 SOS Son of sevenless homolog 1
P08631 HCK Tyrosine-protein kinase HCK
P42338 PIK3CB Phosphatidylinositol 4,5-bisphosphate 3-kinase
P29353 SHC1 SHC-transforming protein 1
Q13480 GAB1 GRB2-associated-binding protein 1
P01112 HRAS GTPase HRas
P07333 CSF1R Macrophage colony-stimulating factor 1 receptor

7.1 General overview

We observe embedding-based community detection, as proposed in this work
offers competitive performance on both synthetic, as well as real networks.
One of the key observation is, SCD performs well if the embedding dimension
is low (as can be observed from the computational complexity analysis). Thus,
we recognize the recent achievements in the field of hyperbolic network em-
bedding as potential further work. The proposed approach was tested with an
efficient implementation of k-means clustering, yet, any clustering algorithm
could be employed at this stage of community detection. Potentially more
efficient alternatives could offer even faster performance.

Speed-wise, SCD - NetMF performed comparably to InfoMap, which was
shown to scale to larger networks, even though the LabelPropagation and Lou-
vain algorithm scaled even better. As discussed, the reduction of embedding
dimension, as well as potentially less costly score, which is maximized could
speed up the computation even further. However, we believe one of the bene-
fits of the proposed SCD is that it can operate on pre-computed embeddings
without any additional modification. This way, the complexity reduces to ex-
ploration of k space, for which we theoretically, as well as empirically proved
that it can be explored efficiently.

In terms of performance, the proposed method performs similarly to In-
foMap and Louvain algorithm, optimizing a different measure of community
quality (in a space where some information on the network structure is lost),
potentially opening many new research venues. Even though we explored some
parameterizations of the networks, we did not perform exhaustive search over
the space of all embeddings, which we believe could potentially offer even
better performance (at a significant computational cost).

The SCD also detected communities, which we interpreted using seman-
tic subgroup discovery tool. Even though the aim of this analysis was not to
discover novel knowledge, we were able to retrieve some existing (empiricaly
proven) connections between proteins present in the same community, indi-
cating such methodology could also offer novel knowledge when applied in a
different setting.
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7.2 Further work

We believe the conducted series of experiments also demonstrates, that mod-
ularity optimization is not necessarily the optimal tactic for finding the best
partition. Modularity, although good at capturing densely connected parts
of the graph, appears to miss-score the less apparent, but just as important
connections.

Recent discoveries in the field of community number estimation also serve
as complementary methodology to the proposed SCD. Here, the initial esti-
mate of the number of communities could be notably improved (we employ a
rather näıve scheme and do not consider any maximum-likelihood estimation).

7.2.1 Non-euclidean geometries

In this work, both the Silhouette computation, as well as the k-means computa-
tion were based on non-euclidean distance. Recent advancements in hyperbolic
embeddings of real world networks offer novel insights into hierarchical organi-
zation underlying many such systems. Both k-means, as well as the Silhouette
can be extended to hyperbolic spaces, for example the Poincaré disc, offering
a natural extension for working with such non-euclidean embeddings.

7.2.2 Complementarity with graph-convolutional networks

Finally, we believe the proposed method is complementary to the recently
emerging graph convolutional neural network embedding methodology. This
branch of algorithms exploits features assigned to nodes (or edges) to obtain
better node representations. As the resulting R|N |×d space is of the same
type as considered in this work, we believe the proposed methodology could
open an elegant extension to the research of community detection with meta
information.

7.2.3 Theoretical improvements

Note that even though we offer a theoretical estimation of the γ parameter, we
believe the work could be further improved should e.g., maximum likelihood-
based estimation of the number of communities in a given network be consid-
ered. Should such estimate be obtained, the space of k values to be explored
could be drastically reduced.

7.2.4 Optimizing the embedding space separately

In this work we performed rather näıve sweep through node embedding space
in order to identify the configuration, which yielded the best Silhouette score.
However, we believe that in certain applications, the node embeddings can
be optimized w.r.t. a different task, e.g., classification, thus eliminating such
expensive parameter search. We leave exploration of such claims for further
work.
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7.2.5 Exploration of low-dimensional embeddings

One of the interest results of this work is the fact that rather low dimensional
embeddings (e.g. d = 32) already yield good results in terms of community
detection. We believe this aspect could be further explored, as d is directly as-
sociated with computational complexity, thus reducing d could yield multifold
speedups, as well as offer insights into minimal dimension, needed to uncover
a given network’s latent structure.

7.2.6 Feature-rich node embeddings as input

The proposed SCD can cluster any (non-contextual) node embeddings. Thus,
the recent body of work focusing on feature-rich networks, which yield real-
valued vectors representing nodes can be naturally used with SCD for the task
of community detection.

7.2.7 Exploration of subnetwork clustering

In this work we explored whether nodes can be grouped in a similar manner
to that of contemporary community detection algorithms. However, instead
of nodes, one can obtain embeddings of whole subnetworks. The proposed
SCD can be naturally extended to such scenario, where, for example, very
large networks could first be reduced to modular units, and the clustered. We
believe this is one of the potential oportunities to scale SCD.

8 Availability

The SCD algorithm is freely available to academic users at https://github.
com/SkBlaz/SCD
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A Closed-form solution for determining the γ parameter

In this section we present the derivation which led to an analytical estimate of the γ (the
interval in which the number of clusters are considered). We begin by theoretical analysis,
followed by evaluation of how well the theoretical estimate fits to a large space of simulated
networks.
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A.1 Problem statement

The value of the optional parameter γ in Algorithm 1 presents a tradeoff between two
extremes. On one hand, setting a low value of γ means that each value k from 1 to K must
be checked. On the other, a high value of γ means that the fineGrained step of SCD (see
Algorithm 1, line 22), where a neighborhood of k, found in the first part of the Algorithm 1
(lines 9-20) is exhaustively evaluated. For example, let the k found in the first part (lines
9-20) be 10 and γ = 2. The fineGrained method of SCD (line 22) additionaly explores the
values of Silhouette when k ∈ {9, 11}—a close neighborhood of the optimum found by the
initial k search.

To discover the optimal setting of γ, we first estimate the time complexity of Algorithm
1 when γ = 1. This setting represents the baseline näıve sweep over all candidate values of
k, and is compared to the search for k with a given value γ > 1.

Without optimizing, with γ = 1, Algorithm 1 does all of the work in its first step.
The algorithm calculates K Silhouette scores, each with a complexity of O(|N |2d) and one
k-means clustering for each k ∈ [1..K]. As the time complexity of the k-means clustering
is O(k|N |d), the time complexity of this step is O(|N |d) + O(2|N |d) + · · · + O(K|N |d) =
O(K2|N |d). The entire iteration of Algorithm 1 therefore has a complexity of

O(K · |N |2d) +O(K2|N |d) = O(K|N |d(|N |+K))

Using a fixed value of γ > 1, on the other hand, means that Algorithm 1 is composed of
two phases. In the first phase, values of k = γ, 2γ, . . . ,K = K

γ
· γ are checked. This means

that K
γ

runs of the Silhouette algorithm and k-means clustering for every checked value of

k, for a total complexity of

O
(
K

γ
|N |2d

)
+O

(
γ|N |d+ 2γ|N |d+ · · ·+

K

γ
|N |d

)
= O

(
K

γ
|N |2d+

|N |dK2

γ

)
= O

(
K|N |d
γ

(|N |+K)

)
In the second phase, once the interval holding the optimal value of k has been discovered,

the γ−1 possible values of k in that interval must still be checked. Assuming that the interval
to check is [n0γ + 1..(n0 + 1)γ − 1], this has a complexity of

(γ − 1)|N |2d+ |N |d(n0γ + 1 + n0γ + 2 + · · ·+ n0γ + γ − 1)

= (γ − 1)|N |2d+

(
n0 +

1

2

)
(γ2 − γ)|N |d

meaning that the total complexity of Algorithm 1’s search for k given a fixed value of γ is

|N |d
(
K(K + |N |)

γ
+ |N |(γ − 1) +

(
n0 +

1

2

)
(γ2 − γ)

)
.

This means that the factor by which the time complexity is decreased by using γ is
equal to

1

γ
+

n0 + 1
2

K(K + |N |)
α2 +

|N | − n0 − 1
2

K(K + |N |)
α−

|N |
K(K + |N |)

.

The optimal value γ at which this factor is minimized can then be obtained as the
solution to the equation
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−
1

γ2
+ 2 ·

1

·K · (K + |N |)
· γ +

k + |N | − 0.5

K · (K + |N |)
= 0. (2)

While Equation 2 is solvable using Cardano’s formulas, we are here only interested in the
asymptotic behaviour of the optimal value of γ in terms of varying values of K. Simplifying
the solution of the equation shows, after some algebraic manipulation, that the optimal

value of γ is O(K
2
3 ).

A.2 Numerical evaluation of theoretical findings

As discussed in the previous section, the connection between the parameter of interest γ
and parameters K—maximum number of communities considered, k, the actual number of
communities and |N |, and the number of nodes in a given network is given in Equation 2.
Being analytically intractable, we simulated the solutions of this equation numerically, over
the following parameter space: values of K, ranging from 10 to 5,000 in the increments of
10, k ranging from 10 to 1,000 in the increments of 10 were considered. The number of nodes
|N | were [500,1000,2500,5000,10000]. For each parameter combination, we solved the Eq. 2
with starting conditions [10,50,100] and averaged the results (for stability purposes). The
results are finally fit to the estimated relation between k and γ, i.e.

γ = a · 3
√
K2 + b.

The agreement between the simulated results and the assumed relation between K and γ is
shown in Figure 9 It can be observed that the agreement between the orange line (model)
and the blue (simulated data) is a reasonably good fit for most of the K space.
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Fig. 9: Fitting the closed-form solution for determining the γ parameter to
simulated data.

B Effects of embedding dimensionality on Silhouette

In this section we offer evidence which led us to introduce optional embedding-level normal-
ization of Silhouette score, yielding more robust community detection. The non-normalized
scores are shown in Figure 10, whereas normalized ones are shown in Figure 11. The plots
show distributions of Silhouette scores across different embedding dimensions. Each distri-
bution is based on grid search across the set of window sizes, as well as negative samples as
discussed in Section 4.5.

The normalized Silhouette scores are computed as follows. Let Silhouette(P (G)) rep-
resent the Silhouette score obtained for a given k (number of clusters). Let sm represent
the maximum Silhouette as identified using the implemented optimization and si the i-th
Silhouette considered when ki clusters were searched for. The normalized sm, denoted sm
is computed as:

sm =
sm −min (si)

max (si)−min (si)

Further, we observed that updating the best-performing embedding space based on
mean normalized Silhouette values also yields more robust performance, yet evaluation of
such claims is left for further work.
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Fig. 10: Non-normalized Silhouette accross dimensions on the considered social
network.

Fig. 11: Normalized Silhouette across dimensions on the considered social net-
work.
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